Microfluidic mixing of nonpolar liquids by contact charge electrophoresis.
نویسندگان
چکیده
We present a simple and effective ratcheted microfluidic mixer that uses contact charge electrophoresis (CCEP) of a micron-scale particle to rapidly mix nonpolar liquids. CCEP combines contact charging and electrostatic actuation to drive the continuous oscillatory motion of a conductive particle between two electrodes subject to a constant (DC) voltage. We show how this oscillatory motion can be harnessed to mix laminar flows by using dielectric "ramps" to direct the particle along non-reciprocal, orbital trajectories, which repeatedly stretch and fold the flowing streams. Complete mixing requires that the speed of the particle is much larger than the fluid velocity such that the particle completes many orbits as the fluid flows through the mixing region. The extent of mixing also depends strongly on the size of the particle and the shape of its trajectory; effective mixers relied on larger particles (comparable to the size of the channel) moving along non-reciprocal orbits. While the present study uses mineral oil as a convenient nonpolar liquid, we also screened fifteen common solvents to determine the applicability of CCEP for mixing other organic liquids. Owing to its simple design and low power requirements (~100 nW), the orbital mixer presented here demonstrates the utility and versatility of ratcheted electrostatic actuation in powering active microfluidic operations.
منابع مشابه
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
This paper describes a procedure that makes it possible to design and fabricate (including sealing) microfluidic systems in an elastomeric material [Formula: see text] poly(dimethylsiloxane) (PDMS) [Formula: see text] in less than 24 h. A network of microfluidic channels (with width >20 μm) is designed in a CAD program. This design is converted into a transparency by a high-resolution printer; ...
متن کاملElectrokinetics of polar liquids in contact with nonpolar surfaces.
Zeta potentials of several polar protic (water, ethylene glycol, and formamide) as well as polar aprotic (dimethyl sulfoxide) liquids were measured in contact with three nonpolar surfaces using closed-cell electroosmosis. The test surfaces were chemisorbed monolayers of alkyl siloxanes, fluoroalkyl siloxanes, and polydimethylsiloxanes (PDMS) grafted on glass slides. All these liquids exhibited ...
متن کاملThree-dimensional multihelical microfluidic mixers for rapid mixing of liquids.
Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional or...
متن کاملValves for autonomous capillary systems
Autonomous capillary systems (CSs) are microfluidic systems inside which liquids move owing to capillary forces. CSs can in principle bring the high-performances of microfluidic-based analytical devices to near patient and environmental testing applications. In this paper, we show how wettable capillary valves can enhance CSs with novel functionalities, such as delaying and stopping liquids in ...
متن کاملMicrofluidic mixing using contactless dielectrophoresis.
The first experimental evidence of mixing enhancement in a microfluidic system using contactless dielectrophoresis (cDEP) is presented in this work. Pressure-driven flow of deionized water containing 0.5 μm beads was mixed in various chamber geometries by imposing a dielectrophoresis (DEP) force on the beads. In cDEP the electrodes are not in direct contact with the fluid sample but are instead...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 14 21 شماره
صفحات -
تاریخ انتشار 2014